

EMPOWER SCIENTISTS TO DISCOVER MORE ON ROSALIND

QUICK START GUIDE

OnRamp.Bio | San Diego, CA WWW.ONRAMP.bio

An Interactive Experience for Analyzing and Collaborating with your Genomic Datasets

Analyze More

Setup experiments across many species and explore interactive results the very same day for RNA, smallRNA, ChIP, nanoString and more

Better Quality Control

Obtain comprehensive Quality Control metrics and graphs with automatic contamination and outlier sample detection

Interpret More

Create comparisons between your samples and obtain deeper insights from over 20 different integrated knowledge bases for pathways, gene ontology, protein interactions and more

Discover More

Utilize ROSALIND's artificial intelligence during a Meta-Analysis to identify hidden patterns and interpretations across experiments and comparisons

Collaborate Effortlessly

Join a collaboration space to have consistency around your data analyses, where any participant can add or interact with every shared experiment - all without ever transferring or downloading shared data

OnRamp.Bio | San Diego, CA

Analyze More

Setup your experiment in minutes.

Beginning your experiment design is as easy as selecting a method and choosing an experiment type.

	CONCEPTENTIMENT Passe describe your new experiment News redst sams a parsone built and tail as more about this type of experiment ups/in designer. This will have us to as more about this type of experiment ups/in designer. This will have us to as more about the type of experiment ups/in designer. This will have us to assess the about the type of experiment ups/in designer. This will have us to assess the about the type of experiment ups/in designer. This will have us to assess the about the type of experiment ups/in designer. This will have us to assess the about the type of experiment ups/in designer. This will have us to assess the about the type of experiment ups/in designer. This will have us to assess the about the type of experiment ups/in designer. Species Max muccular Tempograph guilts Tempograph guilts Tempograph guilts Tempograph guilts	0
280	socranomyce somsak	

Many species are already included in **ROSALIND** and more can be added upon request.

Analyze More

ROSALIND uses the NCBI BioProject and BioSample data model for annotating samples and to simplify GEO/SRA submissions as well as the automatic importing of public data sets.

							١
	49	S	ONSAMPLE Review your samp Below is a summary of the everything is correct before by input/gio controls to be title. Clack on any table cell medification to use a compared	le data to ensure nformation you have ent proceeding. You are una ensure accuracy. You n o edit sample informatice is densitie	E ACCUFACY tered for your samples able to return to editing may also sort by any to nr. Further, the buttons	and experiment design. Please make sure after this tase, Group and color by replicates and the column by clicking on the appropriate column a tit he lower right will help you make further	
4	920×		Samples Grouped & Color	ed By · Replicates Treatment	Lab M	Barcole	
			Control 1 Control 2 Control 3	None None	C1 C2 C3		
			Sample 1 Sample 2 Sample 3	Pterosin 8 Pterosin 8 Pterosin 8	\$1 \$2 \$3		
			YESI I HAVE REVIEWED N	Y SAMPLE DATA		EDIT SAMPLE DATA EDIT REPLICATES	

ROSALIND provides a sample sheet with color-coded replicates for easy review of your experiment design before you upload your data.

Analyze More

Comparisons may be setup during the initial experiment design or at any time after the experiment has completed processing.

	and the second se	ONLAUNCH Choose your files to uploa Desse select the Single-End or Pared select your FATOL 02, and 02P files. Navigating way from this screen upload files per sample, click the inspirsts But	ad End opsion according to your sequencing data You may also drag. & Grop them in the groy is the upload process may cause your file tran on @ for instructions.	You may use the browse button to neas. Uploads will start automatratify, after to fail. If you have multiple FASTQ	Ø
		Sequencing Strategy	Single-End 🤲 Paired-End		
		Launch After Uploads Finish			
		Control 1	100A	SR62994336_control_1.fauto gz	
		Control 2	LEFT READ - R1 READ - 82		
		Control 3	LEFT READ - R1 RIGHT READ - R2		
		Sample 1	LEFT READ - R1 BUGHT READ - R2		
		Sample 2	LEFT READ - R1 READ - R2		
		Sample 3	LEFT READ - R1 RIGHT READ - R2		

Easily import FASTQ, SRA and Counts data files. **ROSALIND** supports paired and single-end files, as well as multi-lane and multi-run files.

Better Quality Control

Comprehensive QC is provided specific to the experiment type.

Pterosin B Treatment of Osteoarthritis Constrainty of the binding thread of the	EXPERIMENT Prerosin & Treatment of Osteoarthritis		Q					۲	(0
the set of		Plerosin B Treatment o Cateorrhitis is a commo joint associated with the Internetion of all about of the Joint Internetion of all B, es a company of the Internetion of the parses B Terrowine Hebbe and chandroyses, and protected carry parses B Terrowine Hebbe and chandroyses, and protected carry parses B Terrowine Hebbe and chandroyses, and protected carry parses B Terrowine B prev 2009/B/D Surget Name Centred 3 199203 Bangle 1 99205 Bangle 3 992005	Osteoarthr isorder that cours utur cartilage. W isorder that cours in protected carti isorder the hyp ge against ottocher per against ottocher ge against ottocher 2 965 3 965 4 965 4 965 4 965	tis es debitating or generated cond (8 at 2 or 8 weet age against cote age age age age of the off off off off off off off off off of	orditions amon honal knockou s after birth inc carthetis device and the second second methods and the second metho	g the elderly. It was a second to be a second to be the second to be the second to be the second to be the second to	tisk factors of osteoarthritis include age, which salt-inducible kinase 3 (1043) specifically in other resolution of anticular cardinal by romessing the during large against solicitations devicement. SIAs 64 (1946) gather solicitations devicements and being SIAs. Nat Commun 2016 Mar 24(2):1995 (1947) SIAs 74 (1947) SIAs	is often troopse dea or sisso in in stroube PMD;		

Quality Control plots on **ROSALIND** summarize pertinent aspects to verify the experiment and each sample before you begin your interpretation.

Each Quality Control plot includes an explanation with links to additional references and the ability to download CSV, SVG, and PNG file formats.

Interpret More

Interactive experiences allow deeper exploration of your data.

Interactive charts enable rapid exploration of differentially expressed genes with full pathway, gene ontology and protein interpretations.

DIFFERENTIAL EXPRESSION		6 6 Q	16 11								Ø
PILTERS O	Pterosin B vs The normalized expr analysis, adjust the f	None ression levels for samples in fold change and p-value thre	your comparison a sholds to your prefe	re displayed belos rrred thresholds.	v. To run a new					۵	
2 Fold Cut Off Filter	贤 581 Genes										
	Name	Description	Fold Change	p-Value	p-Adj	Control 1	Control 2	Control 3	Sample 1	Sample 2	
	Col24a1	collagen_ type XXIV_ alpha 1	-2.12701	1.05e-6	1.68e-5	7.48644	6.74016	6.9024	6.04853	5.88219	
	Col6a5	collagen_ type VI_ alpha 5	3.38297	7.50e-6	0.00010	1.60313	2.64218	0.0	4.25191	4.8592	
• p-A0] < 0.01	Coro1a	coronin_ actin binding protein 1A	-7.05409	3.84e-16	1.75e-14	6.21661	6.52707	5.34136	3.00368	0.975528	
APPLY RESET	Cod1	coactosin-like 1 (Dictyostelium)	-2.24561	3.21e-11	9.31e-10	8.27024	8.58785	7.95058	6.89899	6.96225	
	Cox6a2	cytochrome c oxidase subunit Via polypeptide 2	-2.52664	0.00038	0.00338	4.93315	4.58905	4.26681	2.32529	3.41462	
	Cpa6	carboxypeptidase A6	-2.96315	5.59e-5	0.00062	3.83259	4.76626	4.47846	2.00315	2.28257	
	Cpoom1	carboxypeptidase X 1 (M14 family)	-3.23062	6.31e-32	7.39e-30	8.78532	9.08507	9.03948	7.1022	7.15065	
	Creb3i1	cAMP responsive element binding protein 3-like 1	-2.46923	1.526-33	1.93e-31	11.1635	10.7749	10.9336	9.64082	9.6871	
	Cryab	crystallin_ alpha B	-2.81166	7.27e-28	7.21e-26	9.1641	9.0484	8.85277	7.61151	7.4587	
	Crybb1	crystallin_ beta B1	-2.61458	0.00051	0.00444	3.93225	3.23068	3.47756	1.0021	0.975528	
	Crybg1	NA	2.16834	2.84e-8	5.77e-7	5.95746	5.97417	6.06402	7.03759	7.40213	
	Caffir	colory stimulating factor 1 receptor	-17.0431	2.44e-81	1.48e-78	8.86945	8.73357	8.55903	4.09142	3.65493	
	Csf2/b	colory stimulating factor 2 receptor_ beta_low-affi	-6.97088	2.16e-15	9.27e-14	5.88468	6.33431	5.1893	2.58847	1.96313	
	Csf2rb2	colory stimulating factor 2 receptor, beta 2, low-af	-2.5198	0.00069	0.00575	5.75457	6.38949	5.5741	0.0	1.96313	

Adjust cut-offs by creating new filters at any time and produce new Interactive Graphs and pathway interpretation.

Interpret More

NTERACTIVE A											
LIST TYPE Pathways / WikPathways			Endochondral Ossification								
SORT BY Abs. Fold Change 4	COI Ros	.ORS alind R/B	Term Name		≁ p-Adj	# of Genes in Term	# of Genes in Target	Up	Down		
f Genes in Target 3		7 [†] 21 [↓]	Microglia Pathogen Phagocytosis Pathway	٩	3.5e-12	41	27	0	27		
			TYR08P Causal Network	Q	9.8e-10	58	30	-4	26		
+6	Gene	Fold Change	Adipogenesis genes	Q	1.1e-07	133	46	20	26		
	Cel10a1 Alpi	-3.54043 -3.40947	Endochondral Opsification	Q	2.9e-07	62	28	7	21		
	lbb	-3.16979	XPortNet - numbers contaction interpretinges in the endposte supported by STRING	0,	0.00058	820	155	39	117		
	Ptch1 Pth1r	-3.05585 -2.29712	8 - E Canadian Bathanan	0	0.00005	40			- 22		
	lgf2	2.24162		2	0.0075			*	-		
	Plau Puer2	-2.10517	Myometrial Relaxation and Contraction Pathways	N.	0.00339	156	41	13	-28		
1	Mef2c	-1.60178	Focal Adhesion-PI2K-Akt-mTOR-signaling pathway	Q	0.01002	320	69	22	47		
	Mmp9	1.59525	Focal Adhesion	0	0.03158	182	43	9	34		
	Adamts4	-1.50412	IL-3 Signaling Pathway	Q	0.03638	98	27	6	21		
	Nkx3-2	1,13839	Factors and pathways affecting insulin-like growth factor (IGF1)-Akt	9	0.07559	31	12	4			
11	Bmp6	-1.13602	signaling	0	0.07078			10			
1.0	Fgf2	1.09357	Podivec, prosen-prosen interactions in the podocyse	4	0.07938	312	04	19	63		
	Timp3	0.943244	Spinal Cord Injury	9	0.08759	98	26	- 11	15		
	Plat Tgfb1 Igf1 Scin Igf1r SoxS	-0.922892 -0.911695 -0.850143 -0.808644 -0.797310 -0.775655	C PACE 1 3 Displaying records 1 - 12 of 155								
	Hmgcs1	0.760983									
	Gli3	0.702322									
	G2039	0.646794									

Seamlessly explore the relationships between differentially expressed genes and each associated pathway, gene ontology, and protein interaction.

Fully interactive pathway diagrams and heatmaps enable rapid observation of gene expression and gene regulation effects.

Discover More

A.I. unlocks hidden patterns in your data with Meta-Analysis.

Meta-analysis finds all the possible patterns in between your comparisons and experiments.

Explore each pattern, see the enriched terms and even change colors before downloading the graphs.

Collaborate Effortlessly

Share experiments without transferring or downloading data.

SPACES			8							Ó
Collaboration Space for Gustor	ser Demos									
Participants	4	7	Collaboration Space for	r Customer Demos						
Experiments	Ð	з	Demonstrating the power of ROSA explore, or add experiments, run ne	LIND SPACES. It's much more that ew filters and comparisons.	n SHARING. Any particij	pant can				
ACTIVITY			Experiments Meta-Ar	nalyses Participants						
Tim Wesselman removed exp nanoString Brain vs UHR - Hur See 03 pains	eriment. han			Company.Institution	Title	Team	Email	Phone		
- Feb 21, 2019			T) Tim Wesselman	OnRamp BioInformatics	CEO		tim@onramp.bio	(858) 705-1356		
Tim Wesselman removed exp KRAS Counts Feb 21, 2019	riment		J Jean Lozach	OnRamp Sio	сто	Exec Team	jean@orramp.bio	(619) 269-4900	Θ	
Tim Wesselman removed exp	eriment		Cassandra Wesselman	Ontamp	Marketing	Stuff	cassandra@onrampbio.com	(661) 803-2449	O	
Feb 21, 2019			Jeremy Davis-Turak	OnRamp BioInformatics	VP Bioinformatics	~	jeremy@onramp.bio	-	0	
Jean Lozach removed experin Targeting KNAS Mutant Cancer In Inhibitor.	Hent rs with a Covalent G	120-Spec	S Scott McIntee	OnRamp BioInformatics	-	÷.	scott@onramp.bio	(760) 213-1278	Θ	
			John burritt	Thermofisher Scientific	20		john.burril@thermofisher.com	1.00	Θ	
Sonn braghio left this space Dec 19, 2016			Cordelia Ziraldo	Advaita Bio	22	-	cordelia@advaitabio.com	12	O	
Cordela Ziraïdo joined this Sp Dec 5, 2018	906			~			guillaume.dumas@pasteur.fr			
John bunili joined this Space Oct 22, 2018										
Tim Wesselman added experi nanoString Brain vs UHR - Hur Oct 17, 2018	nent nan		ADD PARTICIPANTS							
Tim Wesselman added experi KRAS Counts Oct 17, 2018	ment									

Easily create a space and invite colleagues or collaborators to work alongside you on your experiments.

SPACES		\otimes		٢
Participants	Her Demos ▲ 7 ⊉ 3	Collaboration Demonstrating the po explore, or add experi	Space for Customer Demos wer of RISALID SINGLES its much howe than SIMRING. Any participant can metrics, no new Rifers and companisors.	
ACTIVITY		Experiments	Meta-Analyses Participants	
Tim Wesselman removed experi- needating Brain val UHR-Hum Peod 2, 2019 Tim Wesselman removed experi- rited and the second experi- ment RNA Brain val UHR Peod 2, 2019 Tim Wesselman removed experi- smal RNA Brain val UHR Peod 2, 2019 Tim Second removed experi- man Case A termination of the second experi- tion of the second removed experi- second removed experi- tion of the second removed experiment ex	rment rment rment ent ent		Effects of the loss of DNA Methylation on Cancer Epigenome The effects of the plobal loss of DNA methylation on the functional cancer epiperony, using 8 samples, 4 antibudes and 2 attributes. We compare the global histore mandicarbo natered H-CTI Scion cancer cell with with genetic devinues. DROI cells which lack DMATB and DNAT1 activity Comparison of histore mains thru on cell types.	
General Activity of the second s	ce	T	Brain vs Universal RNA - Qiagen Kit Comparisons of Human brain and universal RNA using 4 different mintures 12 🍫 2 💶 2 🥀 1 😒 Jean Losson	
Tim Wesselman added experim nanoString Brain va UHR - Hum Oct 17, 2018	sent.		nCounter assay 20130226_GX (from nSolver 4.0 normalized data)	
Tim Wesselman added experim IORAS Countin Oct 17, 2016	sent		GX Train RCC File Annotations Lanes 1-3: 100ng Human Reference RNA Lanes 4-6: 70ng Human Reference RNA / 30ng Human Brain RNA Lanes 7-9: 30ng Human Brain Reference RNA / 70ng Human Brain RNA Lanes 1-1-2: 100ng Human Brain RNA	
			12 🔦 - 1 🚺 - 1 🥀 - 1 🛞 Jean Lozach	

Collaborate, explore and analyze the same data simultaneously without having to download, transfer or install anything.

About **ROSALIND**

Based in the Genomics Capital of San Diego, OnRamp.Bio provides ROSALIND[™], the first-ever genomics analysis platform specifically designed for life science researchers to analyze and interpret datasets, without any prior bioinformatics skills.

Named in honor of pioneering researcher Rosalind Franklin, who made a major contribution to the discovery of the double-helix structure of DNA with her famous photograph 51, the ROSALIND[™] platform aims to simplify the practice of genomic data interpretation, so biologists, researchers and drug developers can harness the potential of genomic information from DNA sequencing to microarrays and mass spec, while reducing costs and increasing productivity.

ROSALIND[™] puts the researcher in the driver's seat of data analysis, and helps to free up valuable time for Bioinformatics Cores to offload standard analyses and focus precious resources on more complex challenges. ROSALIND[™] brings bioinformatics analyses to the bench by broadly expanding access to genomic and proteomic technologies for cancer research and precision medicine.

Register for Free: www.rosalind.onramp.bio/register

Learn More: www.onramp.bio/rosalind

